[image: image1.png]Y/ o Tho sp]

Open Architecture for
Free Internet Gaming

Developer Specification
Version 2.2

Overview

The document that follows will describe the interaction between your game server, game client, and the pieces of the GameSpy network that make it all fit together.
 A separate document, the GameSpy Developer SDK, provides documentation for a simple C library designed to assist in implementation of this spec.

The GameSpy Network

Here is a quick diagram of how everything fits together in the GameSpy Network. Each component is discussed in detail in the GameSpy Developer Spec.

The “Game Server” and “Game Client” are components written by you, the game developer. “GameSpy Browser” is either one of our standalone products, like GameSpy 3D, or an in-game browser you develop as part of your game. “GameMaster” is GameSpy’s back-end master server database .

1. Heartbeat: This simple packet is sent from the game server to the master server in order to announce its presence. It is resent every 5 minutes, and also when there is a state change.

2. Validation: The master server queries to game server to obtain the latest information and to make sure it is a real server.

3. List Requests: The GameSpy browser requests lists of game servers from the master.

4. Server List: The master server sends the browser a list of running servers.

5. Server Queries: The GameSpy browser queries each game server in order to determine latency and current status/settings.

6. Server Info: The game server responds with the requested information.

7. Launch Game: When a server is selected, or a client hosts a game, the browser launches the game client with parameters passed via the command line or other launching interface (DirectPlay Lobby, for example). In the case of an in-game browser, this is all internal to the game.
8. Game Protocol: The game client connects to the specified game server and all further communication is directly between the client and the host/server.

Game Types

Dedicated Server Games

Dedicated server games are those in which a stand-alone server is used to coordinate and run the game. The server continues running whether or not it has players currently connected.

Dedicated server games support joining and leaving without restarting the server, although they may only allow joining during a certain phase of the game. It is suggested that if you only allow new players during a certain phase, that you allow other players to connect and observe while waiting for the current game to finish.

Dedicated servers should follow the rest of the specs in this document exactly. If the server allows joining at any time, you should always report the game status as “openplaying”, otherwise report the status as appropriate.

Peer to Peer Games

Peer-to-Peer games are those in which there is no “external” server involved. One of the clients usually is the “master” and coordinates the game with the other clients. Some games have systems in which the master will change to another client if the current master disconnects. Some dedicated server games also allow for a “listen server” mode in which a client can act as the server as well, simulating a peer to peer game.

Peer-to-Peer games involve (at least) a two step process:

· A joining phase, where the master client sets options and waits for other clients to join

· A game phase, where the players are in the game playing.

Some peer-to-peer games also support connections in the game phase (Descent or Rainbow 6, aka peer-to-peer late entry), while others only support connections in the joining phase (Total Annihilation or Starcraft, aka coordinated launch games)

Peer-to-Peer games are supported in GameSpy via game lobbies and staging rooms. A player can choose to host a game, which will create a staging room and allow other players to join. Once other players have joined, the host will select launch, and GameSpy will launch the game using either DirectPlay Lobby launch, or command line launching.

For late entry games, once the host has been launched, the game is responsible for sending heartbeats to the master and processing queries/replies (e.g. using the Developer SDK). Coordinated launch games do not need to report to the master since they don’t allow anyone to join except the original players. The bulk of this document is concerned with describing how the heartbeat/query process works, if your game is only coordinated launch all we need is the command line or DirectPlay launching information for your game.

The Game Server

GameMaster Overview

GameMaster is our universal online gaming master server (actually an entire system of servers), designed to handle server lists for all types of online games. Game servers (whether dedicated or peer-to-peer) report to GameMaster upon spawning. GameMaster will validate the server and add it to the listing of currently available game servers. Players using GameSpy will query GameMaster for a list of servers and can then check each individual server for information about the game.

The GameSpy Network maintains a group of geographically diverse master servers. All game servers report to a central server (actually multiple servers accessed via round-robin DNS) located at master.gamespy.com. Game Clients can query the server list from any of our geographically diverse master sources.

Heartbeat

The machine that acts as a game server will send a heartbeat to the master server every 5 minutes while it is running, with the first one being sent as soon as the server is ready to receive/host players. This applies to both dedicated servers and peer-to-peer servers. Additional heartbeats are sent if the state of the game changes.

There are two types of heartbeats: “Normal” and “State-Changed” heartbeats. Normal heartbeats are sent every 5 minutes to announce the server’s presence to the master. “State Changed” heartbeats are sent whenever the “gamemode” rule for a server changes. For example, a game goes from waiting to in-progress, or a server is shutting down gracefully. The first heartbeat received from a server is always treated as a “state changed” heartbeat, no matter which type it actually is.

When the GameMaster server receives the first heartbeat, it will add it to a list of new servers. Within a few seconds it will send a “basic” server query, according to the query interface defined below. If the response is correct, the server will be added to the master list for queries from GameSpy.

If your server is shutting down, it is recommended that you set the “gamemode” to “exiting”, then send the state-changed heartbeat. You do not have to wait for a query before shutting down. If the server is queried and there is no response, it will be removed from the list (until another heartbeat is received).

The heartbeat is a UDP packet sent to port 27900 of the master server in the following format:

Normal Heartbeat:
\heartbeat\<queryport>\gamename\<your unique game name>

State-Changed Heartbeat (identical to Normal, with additional \statechanged\ key):
\heartbeat\<queryport>\gamename\<your unique game name>\statechanged\

The query port should be the UDP port that the server expects queries on. It should be a string from 1025 to 65535, and the value is up to the developer or server host. See the FAQ section for recommendations on choosing a query port The gamename key is needed so that the master will know how to send the secure query.

Example: \heartbeat\8777\gamename\gmtest OR \heartbeat\8777\gamename\gmtest\statechanged

Queries

Queries are sent to the server by GameSpy or the GameMaster server in order to obtain the latest information about it. They are sent in the form of key\value pairs, and more than one query can be sent in a packet. Queries are initiated when a client sends a UDP query string to the port specified in the heartbeat to the master. The game server responds with one or more packets containing the requested query information.

Valid Queries are:

· \basic\

· \info\

· \rules\

· \players\

· \status\

· \echo\

See below for a more detailed description of each query.

Replies (Server Info)

After a server has received a query packet it should parse and reply to each query in the packet (if there is more than one).

Query replies should be in the form of key\value pairs. All “\” characters should be stripped out of the keys and values.

You may send as many or as few packets as needed, but each packet must include the query id and packet number. The final packet will include a \final\ identifier. The maximum packet size is 1400 bytes (larger packets break on some routers). You may include as many keys\values as needed until the packet is full or have sent all requested information.

You should use as few packets as possible to send the information, since each additional packet increases the chance of one getting lost. Keys\values pairs should not be split between packets, since out of order delivery is possible.

Each query from a client should be assigned a query id. The query id is simply a unique number to identify that query. You may start at 0 and increment for each query you receive, or just rotate through 0-100, or pick a random number for each query.

Each packet in the reply should include the query id and packet number: \queryid\<queryid>.<pnumber>

There reply information for each query is as follows:

The “\basic\” query reply sends the following information:

· Game Name (single string, no spaces, unique id): \gamename\quakeworld

· Game Version: \gamever\1.001

· Location (based on region number): \location\3

The “\info\” query reply sends “at a glance” server information, such as:

· Server name: \hostname\Bob’s Server

· Server port: \hostport\22355

· (optional) Server IP: \hostip\111.222.12.44

· Map/Level name: \mapname\the big conspiracy

· Mod or Game type: \gametype\melee

· Number of players and maximum number of players: \numplayers\5\maxplayers\8

· Game mode: \gamemode\openplaying

The “\rules\” query reply sends game specific rules and other misc. information:

· Any game specific rule\value pairs, such as: \teamplay\1\timelimit\20\fraglimit\50\package1\grapple\package2\ctf\package3\newweapons

· User defined, or misc. data, such as: \cpu\P2-300\connection\T1\admin\bob@aol.com

· Custom parameters that should be passed to the client command line: \cl_voiceport\6222

· Whether the game requires a password to enter: \password\1

The “\players\” query reply sends information about all connected players and teams, including game specific fields as required.

· Player Name: \player_0\Roger Wilco

· Kills / points: \score_0\20

· Total deaths: \deaths_0\5

· Ping on that server: \ping_0\200

· Player Team: \team_0\0

· Team Name: \team_t0\Terran

· Team Score: \score_t0\50

If you define a key that ends with an underscore and then a number (such as score_1), it is assumed to be a custom player field and will be displayed by GameSpy on the player list. If the key ends in an underscore then a “t” and a number (such as score_t1) it is assumed to be a custom team field and will be displayed by GameSpy on the team list. Note the difference between “team_0” (which would indicate which team player 0 is on) and “team_t0” (which would indicate the name for team 0).

The “\status\” query reply sends:

· All of the information in the basic, info, rules, and players queries, one right after the other, broken into packets if needed.

The “\echo\” query reply sends back the text sent to it, pre-pended with a \echo\.

E.g. “\echo\the time is 10:30” would send back “\echo\the time is 10:30”

The following is a full list of possible keys and their descriptions:

Reserved keys

· \queryid\ - followed by the queryid.packet number (e.g. 323.1)

· \gamename\ - followed by your unique gamename (case-sensitive)

· \gamever\ - followed by a version specifier (x.yy format preferred)

· \validate\ - followed by an validation string

· \location\ - followed by a 5 digit numeric string (for a US Zip code) or a 2 letter country code (for Non-US). See Appendix A for more information.

· \hostname\ - followed by a descriptive host-defined string (can include spaces) that identifies the server (e.g. “Joe’s Game!”)

· \hostip\ - followed by a dotted IP address for the server. Only required if the server to connect to is not the same as the machine sending the heartbeat/accepting queries.

· \hostport\ - followed by the port the client should connect to. The client will be passed hostip:hostport as part of the command line.

· \mapname\ - followed by the map name (either filename or descriptive name)

· \gametype\ - string which specifies the type of game, or the mod being played. Passed to the client if required when launching the game.

· \numplayers\ - numeric string, number of players on the server

· \numteams\ - numeric string, number of teams on the server

· \maxplayers\ - numeric string, max number of players for this server

· \gamemode\ - string which specifies what is going on in the game at that time. Suggested modes are (you may need to add your own):

· wait – waiting for players to join

· settings – players are determining game parameters, no joining allowed

· closedplaying – game is in progress, no joining allowed

· openplaying – game is in progress, players may still join

· debriefing – game is over, stats / info is being shown, no joining allowed

· exiting – server is shutting down, remove from server list

· \teamplay\ - number which defines the type of teamplay in use, or 0 for no teamplay. Values > 0 are up to the developer

· \fraglimit\ - number of total kills or points before a level change

· \timelimit\ - amount of total time before a level change occurs

· \password\ - 0 or not present if no password is required to join, 1 if password is required.

· \cpu\ - (optional) string, cpu type of the server

· \connection\ - (optional) string, net connection of the server.

· \player_N\ (where N is a number 0 .. X, where X+1 is the number of players on the server) – followed by a string which specifies a player name (may include spaces)

· \score_N\ - numeric string that contains the score (kills/points) for player N

· \skill_N\ - a skill rating, if applicable, for player N

· \ping_N\ - the ping for player N

· \team_N\ - the team player N is on, either numeric or string

· \deaths_N\ - number of deaths a player has had

· \team_tN\ - the name for team N

· \score_tN\ - the score for team N

· \final\ - signifies the last packet in the query response

These reserved keys have fixed meanings. You are free to define your own keys (or allow server admins to define additional ones) and send them during the “rules” or “players” queries.

Security

It is very important that the GameMaster server be able to validate all game servers sending it heartbeats. Without validation, hackers can flood master servers creating multiple “ghost” servers and overflowing its capacity.

GameSpy authenticates servers through an echo check and, optionally, a secret key challenge/response system.

For games developed on an open-source platform, or a platform where obfuscating a secret key would be difficult, GameMaster can validate the server via a simple echo check. After receiving the initial heartbeat from a server, GameMaster will send a \basic\\echo\<some string> query. Simply reply to this query as normal and your server will be validated.

For an additional level of security, we recommend using the secret key validation system.

You will be issued a secret key for use in your game. This key should be encoded into your game in some manner. After receiving the initial heartbeat from a server, GameMaster will send a \basic\\secure\<some string> query. The secure tag will be followed by a string of random ASCII data. You are responsible for taking this string, encrypting it with the secret key, encoding it into printable characters, and attaching it to the end of your reply with a \validate\ key. The encryption and encoding functions are simple to use and included in the sample source. If you use the GameSpy Developer SDK, this entire process is automated for you.

See Appendix B for additional security information
The Game Client

Launching

GameSpy’s standalone browser products supports launching of games by any of 3 supported methods:
· DirectPlay lobby

· Text Configuration file

· Command line

Command line launching is generally the most flexible and easiest to implement option for developers.

We are flexible to work with whatever command line format your game uses, but in general, the information we need to pass to the game is:

· Server to connect to

· Player name

· Player team

· Player skin / color

· Game type (if it is not determined automatically)

· A password, if required by the server

The suggested format for the command line is: +option1 “value1” +option2 “value2” +option3 “value3” etc.
If there are options are in a config file, the command line will include +config “file.ext”
Lines in a config file are one option and value per line, as on the command line.

Example options include:

· +connect “server.ip.addr:port” – server to connect to

· +name “player name” – name desired by the player

· +team “player team” – team, race, or other designation desired by the player

· +skin “gameskinformat” – skin, color, or other individualization

· +game “mygametype” – type of game to be played, or custom game directory if required

· +ip “local.ip.addr” – Local IP address, for use on multi-homed machines. If this is present you should bind to the given IP address.

· +password “some_character_string” – If the server requires a password (\password\1 in the rules query), and the user has specified a password in GameSpy for the server, it will be passed on the command line.

Options that may be used when the client is hosting the game include:

· +host “gameport” – host a game on the specified port (ignore the port if you always use a fixed value)

· +maxplayers “number” – maximum number of players to allow

· +hostname “descriptive string” – Descriptive name chosen by the host (like “Joe’s Game”). You can truncate this value to the max length that your game allows.

· Other hosting options (map, misc settings) should be presented to the hosting client when they launch the game.

The server can specify options that will be passed to the client by prefixing custom keys in the “rules” key\value list with “cl_”. For example, if the server key\value query includes “\cl_voiceport\6666” then “+cl_voiceport 6666” will be passed to the client when it is launched.

You should quietly ignore any parameters passed to the client that are not needed or unknown. Parameters with spaces will be enclosed in quotes. If there are additional launching parameters that your game requires, please contact us so we can decide how to best work them in.

Here are some examples of command lines:

mygame.exe +connect 128.2.2.2:7776 +name “joe player” +team “red” +skin “male/ogre/myskin”

mygame.exe +config gspytemp.cfg

Where gspytemp.cfg includes:

name “Joe Player”

team “Red”

skin “male/ogre/myskin”

connect 244.222.111.1:22666

mygame.exe +host 7777 +maxplayers 8 +name “Zorg” +team “blue” +hostname “Zorg’s Big Game”

Custom Configuration

Each game supported by GameSpy can have its own custom configuration dialog within the GameSpy browser. Options that generally change each launch should be shown by your game after it is launched.

In order for us to add a custom configuration for your game, we need you to provide a simple list of options/values that we can offer the user. The options must be both simple and non-data dependant (i.e. we can’t access the files that come with your game). You can also optionally provide a screenshot with your idea of what the dialog should look like.

Here is an example specification:

We need a custom configuration tab for Hubby Hunter with the following options:

+race = “Race” – drop down box – one of “Human” “Alien” “Cyborg”

+color = “Color” – drop down box – one of “Red” “Blue” “Green” “Yellow”

+crosshair = “Show Crosshair” – checkbox – default checked

+food = “Favorite Food” – text box – max size 30 characters

+aim = “Auto Aiming” – checkbox – default not checked

etc…

The options you specify will be passed on the command line, or in a config file as specified above. Text strings will be enclosed in quotes, so they may contain spaces if needed. Yes/No options will be specified with 1/0 on the command line.
It is highly recommended that your game work regardless of whether these options are present or not. The GameSpy browser includes a dynamic update capability so that new games will be added automatically, but it will make your game easier to test during development if it does not require the custom configuration.

Installation Notification

In order for GameSpy 3 to automatically detect when a new game has been installed, we ask that you write a simple registry key during your installation process to alert us that a new game has been installed. We will check this key the next time GameSpy is launched, and alert the user that the game can now be played online via GameSpy. If GameSpy is not installed on the machine the key will do no harm and can still be added. The registry key needs to be an REG_SZ value, with the name being your issued gamename and the string being the location of the game EXE file. The string should be installed in the key: HKEY_LOCAL_MACHINE\SOFTWARE\GameSpy\games. The following .reg file installs an example game string:

REGEDIT4

[HKEY_LOCAL_MACHINE\SOFTWARE\GameSpy\games]

"unreal"="d:\\games\\unreal\\system\\unreal.exe"

Appendix A: Location Key Values

One of the reserved keys for servers/hosts is “location”. This value is defined to be either a 5 digit ZIP code (for the US) or a two letter ISO country code (for outside the US). This location value will be used to help players find servers/hosts that are close to them geographically (which helps with both lag and language issues). Most server operators will know their ZIP / country code, so this should not be an issue.

For your own reference, here is the full list of ISO country codes:

Afghanistan=AF

Albania=AL

Algeria=DZ

American Samoa=AS

Andorra=AD

Angola=AO

Anguilla=AI

Antarctica=AQ

Antigua and Barbuda=AG

Argentina=AR

Armenia=AM

Aruba=AW

Australia=AU

Austria=AT

Azerbaijan=AZ

Bahamas=BS

Bahrain=BH

Bangladesh=BD

Barbados=BB

Belarus=BY

Belgium=BE

Belize=BZ

Benin=BJ

Bermuda=BM

Bhutan=BT

Bolivia=BO

Bosnia and Herzegovina=BA

Botswana=BW

Bouvet Island=BV

Brazil=BR

British Indian Ocean Territory=IO

Brunei Darussalam=BN

Bulgaria=BG

Burkina Faso=BF

Burundi=BI

Cambodia=KH

Cameroon=CM

Canada=CA

Cape Verde=CV

Cayman Islands=KY

Central African Republic=CF

Chad=TD

Chile=CL

China=CN

Christmas Island=CX

Cocos (Keeling Islands)=CC

Colombia=CO

Comoros=KM

Congo=CG

Cook Islands=CK

Costa Rica=CR

Cote D'Ivoire (Ivory Coast)=CI

Croatia (Hrvatska=HR

Cuba=CU

Cyprus=CY

Czech Republic=CZ

Denmark=DK

Djibouti=DJ

Dominica=DM

Dominican Republic=DO

East Timor=TP

Ecuador=EC

Egypt=EG

El Salvador=SV

Equatorial Guinea=GQ

Eritrea=ER

Estonia=EE

Ethiopia=ET

Falkland Islands (Malvinas)=FK

Faroe Islands=FO

Fiji=FJ

Finland=FI

France=FR

France, Metropolitan=FX

French Guiana=GF

French Polynesia=PF

French Southern Territories=TF

Gabon=GA

Gambia=GM

Georgia=GE

Germany=DE

Ghana=GH

Gibraltar=GI

Greece=GR

Greenland=GL

Grenada=GD

Guadeloupe=GP

Guam=GU

Guatemala=GT

Guinea=GN

Guinea-Bissau=GW

Guyana=GY

Haiti=HT

Heard and McDonald Islands=HM

Honduras=HN

Hong Kong=HK

Hungary=HU

Iceland=IS

India=IN

Indonesia=ID

Iran=IR

Iraq=IQ

Ireland=IE

Israel=IL

Italy=IT

Jamaica=JM

Japan=JP

Jordan=JO

Kazakhstan=KZ

Kenya=K

Kiribati=KI

Korea (North)=KP

Korea (South)=KR

Kuwait=KW

Kyrgyzstan=KG

Laos=LA

Latvia=LV

Lebanon=LB

Lesotho=LS

Liberia=LR

Libya=LY

Liechtenstein=LI

Lithuania=LT

Luxembourg=LU

Macau=MO

Macedonia=MK

Madagascar=MG

Malawi=MW

Malaysia=MY

Maldives=MV

Mali=ML

Malta=MT

Marshall Islands=MH

Martinique=MQ

Mauritania=MR

Mauritius=MU

Mayotte=YT

Mexico=MX

Micronesia=FM

Moldova=MD

Monaco=MC

Mongolia=MN

Montserrat=MS

Morocco=MA

Mozambique=MZ

Myanmar=MM

Namibia=NA

Nauru=NR

Nepal=NP

Netherlands=NL

Netherlands Antilles=AN

New Caledonia=NC

New Zealand=NZ

Nicaragua=NI

Niger=NE

Nigeria=NG

Niue=NU

Norfolk Island=NF

Northern Mariana Islands=MP

Nor way=NO

Oman=OM

Pakistan=PK

Palau=PW

Panama=PA

Papua New Guinea=PG

Paraguay=PY

Peru=PE

Philippines=PH

Pitcairn=PN

Poland=PL

Portugal=PT

Puerto Rico=PR

Qatar=QA

Reunion=RE

Romania=RO

Russian Federation=RU

Rwanda=RW

Saint Kitts and Nevis=KN

Saint Lucia=LC

Saint Vincent and The Grenadines=VC

Samoa=WS

San Marino=SM

Sao Tome and Principe=ST

Saudi Arabia=SA

Senegal=SN

Seychelles=SC

Sierra Leone=SL

Singapore=SG

Slovak Republic=SK

Slovenia=SI

Solomon Islands=SB

Somalia=SO

South Africa=ZA

S. Georgia and S. Sandwich Isls.=GS

Spain=ES

Sri Lanka=LK

St. Helena=SH

St. Pierre and Miquelon=PM

Sudan=SD

Suriname=SR

Svalbard and Jan Mayen Islands=SJ

Swaziland=SZ

Sweden=S

Switzerland=CH

Syria=SY

Taiwan=TW

Tajikistan=TJ

Tanzania=TZ

Thailand=TH

Togo=TG

Tokelau=TK

Tonga=TO

Trinidad and Tobago=TT

Tunisia=TN

Turkey=TR

Turkmenistan=TM

Turks and Caicos Islands=TC

Tuvalu=TV

Uganda=UG

Ukraine=UA

United Arab Emirates=AE

United Kingdom=UK

United States=US

US Minor Outlying Islands=UM

Uuguay=UY

Uzbekistan=UZ

Vanuatu=VU

Vatican City State (Holy See)=VA

Venezuela=VE

Viet Nam=VN

Virgin Islands (British)=VG

Virgin Islands (US)=VI

Wallis and Futuna Islands=WF

Western Sahara=EH

Yemen=YE

Yugoslavia=YU

Zaire=ZR

Zambia=ZM

Zimbabwe=ZW

Other=ZZ

Appendix B: GameSpy Security Specification (excerpt)
Overview

It is important to maintain security, privacy, and authentication in all GameSpy connections.

Because GameSpy does not transfer information of any value, the primary concern is amateur hackers trying to hack into or shut down the system.

Analysis

The primary channels of communication for GameSpy are:

1. Game Servers -> Master Server (Heartbeat)

2. Master Server, GameSpy, Other Clients -> Game Servers (Queries)

3. Game Servers -> Master Server, GameSpy (Query responses)

4. GameSpy -> Master Server (List Queries)

5. Master Server -> GameSpy (Lists and Server information)

6. Master Server -> Master Server (List Updates)

We need to look at each of these connections individually to determine the amount of security and authentication required. (Note: excerpted version only includes 1 and 3)

1. Game Servers -> Master Server (Heartbeat)

The heartbeat is a simple message that tells the server the game is still running. Possible reasons for a hacker to fake this message include:

· Making it look like many fake servers are running

· Making it look like a server which has shut down is still running

· Flooding the server, slowing down queries from users and other network activity.

There is no true way to send a secure heartbeat (i.e. one that is unique and verifiable without querying the server) so we must assume that any heartbeat in the correct form is valid. However, we will check all heartbeats with secure queries, and server not responding correctly will not be added to the list.

Flooding a server is also not a problem, so long as the server has more bandwidth than the sender. If the sender has more bandwidth, a flood will be successful no matter what the sender is sending. A hacker can also not use it to flood another destination, since the queries sent out are no larger than the heartbeat.

3.
Game Servers -> Master Server, GameSpy (Query responses)

Responses are sent to a client based on a Query received. The most likely reason to fake this message is:

· Make fake servers show up on the list

Now, each server would have to have a valid IP and port, or else the query would not reach it. However, a user could attempt to time responses, so that it could send them without ever hearing the query. Because of this, we must offer the option of a secure query and a validated response. The secure query includes a random query key. To send a validate response, a server simply encrypts the query key with its secret key. The master server decrypts the response and checks it against the key it sent.

Here is an example of a query:

\basic\\secure\3Fca11

And a response:

\gamename\GMTest\gamever\gmtest 1.00\location\1\final\\queryid\1.1\validate\D324c2eA

Appendix C: Example queries and responses

RECIEVED QUERY : \basic\

SENT RESPONSE : \gamename\GMTest\gamever\gmtest 1.00\location\1\final\\queryid\1.1

RECIEVED QUERY : \status\

SENT RESPONSE : \gamename\gmtest\gamever\2.00\location\1\hostname\GameMaster Arena Server\hostpo

rt\25000\mapname\gmtmap1\gametype\arena\numplayers\12\maxplayers\32\gamemode\ope

nplaying\timelimit\40\fraglimit\0\teamplay\1\rankedserver\1\player_0\Joe Player\

score_0\22\deaths_0\21\skill_0\339\ping_0\23\team_0\\player_1\L33t 0n3\score_1\1

5\deaths_1\7\skill_1\762\ping_1\0\team_1\\player_2\Raptor\score_2\26\deaths_2\11

\skill_2\564\ping_2\372\team_2\Red\player_3\Gr81\score_3\8\deaths_3\0\skill_3\57

1\ping_3\237\team_3\Blue\player_4\Flubber\score_4\2\deaths_4\2\skill_4\393\ping_

4\10\team_4\Red\player_5\Sarge\score_5\9\deaths_5\0\skill_5\575\ping_5\12\team_5

\Red\player_6\Void\score_6\27\deaths_6\30\skill_6\234\ping_6\301\team_6\\player_

7\runaway\score_7\7\deaths_7\12\skill_7\438\ping_7\1\team_7\Red\player_8\Ph3ar\f

rags_8\4\deaths_8\25\skill_8\39\ping_8\497\team_8\Red\player_9\wh00t\score_9\11\

deaths_9\22\skill_9\110\ping_9\313\team_9\Red\player_10\gr1nder\score_10\12\deat

hs_10\17\skill_10\663\ping_10\460\team_10\Blue\player_11\Mace\score_11\2\deaths_

11\30\skill_11\848\ping_11\100\team_11\Red\final\\queryid\3.1

RECIEVED QUERY : \players\

SENT RESPONSE : \player_0\Joe Player\score_0\22\deaths_0\21\skill_0\339\ping_0\23\team_0\\player

_1\L33t 0n3\score_1\15\deaths_1\7\skill_1\762\ping_1\0\team_1\\player_2\Raptor\f

rags_2\26\deaths_2\11\skill_2\564\ping_2\372\team_2\Red\player_3\Gr81\score_3\8\

deaths_3\0\skill_3\571\ping_3\237\team_3\Blue\player_4\Flubber\score_4\2\deaths_

4\2\skill_4\393\ping_4\10\team_4\Red\player_5\Sarge\score_5\9\deaths_5\0\skill_5

\575\ping_5\12\team_5\Red\player_6\Void\score_6\27\deaths_6\30\skill_6\234\ping_

6\301\team_6\\player_7\runaway\score_7\7\deaths_7\12\skill_7\438\ping_7\1\team_7

\Red\player_8\Ph3ar\score_8\4\deaths_8\25\skill_8\39\ping_8\497\team_8\Red\playe

r_9\wh00t\score_9\11\deaths_9\22\skill_9\110\ping_9\313\team_9\Red\player_10\gr1

nder\score_10\12\deaths_10\17\skill_10\663\ping_10\460\team_10\Blue\player_11\Ma

ce\score_11\2\deaths_11\30\skill_11\848\ping_11\100\team_11\Red\final\\queryid\6

.1

RECIEVED QUERY : \info\

SENT RESPONSE : \hostname\GameMaster Arena Server\hostport\25000\mapname\gmtmap1\gametype\arena

numplayers\12\maxplayers\32\gamemode\openplaying\final\\queryid\8.1

RECIEVED QUERY : \rules\

SENT RESPONSE : \timelimit\40\fraglimit\0\teamplay\1\rankedserver\1\final\\queryid\9.1

RECIEVED QUERY : \basic\\secure\123456\

SENT RESPONSE : \gamename\gmtest\gamever\2.00\location\22026\validate\Sen5c0WR\final\\queryid\10.1

RECIEVED QUERY : \basic\\echo\123456\

SENT RESPONSE : \gamename\gmtest\gamever\2.00\location\22026\echo\123456\final\\queryid\12.1

 Appendix D: Frequently Asked Questions

Q:
Are key names case sensitive?

A:
Yes, all of the “reserved” key names are case sensitive. Custom rules can use any case.

Q:
I send a heartbeat, but never receive a \basic\\secure query.

A:
Either your heartbeat is not getting through (firewall? our server down?), or your query port listed in the heartbeat is incorrect.

Q:
I receive and reply to the \basic\\secure query, but my server doesn’t show up on the master and/or in GameSpy.

A:
The most common cause is that your \validate\ value is not correct. Double check the computation or contact devsupport@gamespy.com for assistance. Also, this may occur if the server is not receiving your query reply (firewall? Sending back to wrong port?)

Q:
How often should I check for queries on the UDP query port?

A:
As often as possible, probably in the main message loop of your program. Server browsers (such as GameSpy) often user query reply times to measure the “ping” to the server, so if you have a 0.5 second delay in replying, the server will appear to have a much higher ping. Also, slower replies mean the server list will take longer to refresh.

Q:
How should I test the query/replies?

A:
The best way is to use the netcat (http://www.gamespy3d.com/developer/nc11nt.zip) to query your server. Run it with the command line: nc –u server.ip.address serverqueryport
(e.g. nc –u 128.5.1.2 27910). Then just type your queries directly (e.g. \status\). You should see the reply from your server.

Q:
How should I test the validation reply?

A:
The best way is to modify the gmtest example program with YOUR secret key. Then you can send the same query to that program and your server via netcat (e.g. \basic\\secure\123456) and make sure they show the same reply.

Q:
How do I choose a query port?

A:
You can use any port between 1025 and 65535, however, please remember the following:

Q:
It is best to pick a port that is not used by an existing game. Otherwise servers will have difficulty running both games (contact us if you have any questions about specific ports)

A:
It is important to allow a way to specify an alternate port (on the command line, in a config file, etc) for your server, so that more than one server can be run on a machine.

Q:
Optionally, you can have the sockets layer choose the port automatically (pass port = 0 to bind, and get the port with getsockname), but this can make it harder to debug/test.

A:
Have you considered making this spec an RFC?

Q:
It has been considered, however we feel that the online gaming is currently undergoing a rapid revolution with many changes in store, and we want the spec to remain flexible as these changes occur. We are always open to input from developers, and ready to support the features of new games as they become available. That said, we have also tried to make the spec as simple as possible, so that any developer can support it in a matter of hours.

A:
How do I remove the server from the GameMaster list once the game is done?

Q:
The best way to have the server removed is to set your gamemode to “exiting” then send a statechanged heartbeat. The master will query your server, find that it is either exiting (or not responding, if it has already quit) and it will be removed from the list.

A:
A server will be removed after approx. 12 minutes if it does not send heartbeats and does not respond to server queries.

8. Game Protocol

7. Command LineLaunch Game

Game Client

Game Server

GameMaster

5. Server Queries

6. Server Info

2. Validation

4. Server List

3. List Requests

1. Heartbeat

GameSpy or

GameSpy LiteBrowser

For all peer-to-peer games, the key items to remember are:

When a player is launched as host, you need to send heartbeats to the master server the entire time the game is in progress (unless you choose not to included heartbeat/query support)

When a player is launched as host, if you do not allow joining a game in progress, you must send the player to a screen where they can wait for others to connect. If you allow joining in progress, you can allow them to set options and then go directly into the game.

Always report the correct status when the server is queried (openplaying, closedplaying, etc.)

This model works with most peer-to-peer games available today. If you believe you have a unique situation, please contact us and we will work with you to find the best solution.

Copyright 1999-2000 GameSpy Industries, Inc.

Please send questions and comments to devsupport@gamespy.com

Updated documentation may be available at http://www.gamespy3d.com/developer

